
Networked Reinforcement Learning

Makito Oku∗ Kazuyuki Aihara†,‡,∗
∗Department of Mathematical Informatics, Graduate School of Information Science and Technology,

The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
†Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

‡Aihara Complexity Modelling Project, ERATO, Japan Science and Technology Agency (JST),

3-23-5-201 Uehara, Shibuya-ku, Tokyo 151-0064, Japan

e-mail: oku@sat.t.u-tokyo.ac.jp

Abstract

Recently, many models of reinforcement learning
with hierarchical or modular structures have been pro-
posed. They decompose a task into simpler sub-tasks
and solve them with multiple agents. In these models,
however, topological relations of agents are severely
restricted. By relaxing the restrictions, we propose
networked reinforcement learning where each agent in
a network acts in parallel as if the other agents are
parts of the environment. Although convergence to
an optimal policy is no longer assured, we show by
numerical simulations that our model performs well
at least in some simple situations.

Key words hierarchical reinforcement learning,
modular reinforcement learning, partially observable
Markov decision process

1 Introduction

Reinforcement learning (RL) is a learning method
in which an agent interacting with the environment
updates its policy sequentially to maximise the cumu-
lative reward by try and error1. Although RL is appli-
cable to a variety of tasks, it has a problem called the
curse of dimensionality: it does not work well for tasks
with a large state space. To cope with this problem, hi-
erarchical RL and modular RL have been proposed2–8.
These models decompose a task into simpler sub-tasks
and solve them with multiple agents.

However, these models have severe restrictions on
topological relations of agents. First, these models
cannot deal with cyclic dependencies among agents,
because in such a structure task decomposition is
difficult to consider analytically. Recurrent connec-
tions, however, are important for partially observable
Markov decision processes (POMDPs)9. Next, most

models require manual task decomposition, because it
is difficult to assure convergence of learning if the role
of each agent is not defined in advance. Automatic
task decomposition has been succeeded only in special
cases5,7. Furthermore, many models are not suitable
for parallel computations. For example, models such
as options8, MAXQ4, and HAM6 work similarly to
the sequential computer program: once a super-agent
calls a sub-agent, the control moves to the sub-agent
until the terminal conditions. Other models such as
MMRL5 use an integration mechanism which inte-
grates information from all the agents.

On the other hand, in our brains an enormous num-
ber of neurons form a complex network and do infor-
mation processing. The neural system is free from
the restrictions described above: the network contains
many cycles, the role of each neuron changes by learn-
ing, and neurons work in parallel. What is interesting
is the neural system somehow works well to solve daily
complex cognitive tasks.

What would occur if we relax the restrictions of a
RL model with multiple agents? Can it work properly
and flexibly like our brains? To answer the questions,
we propose networked RL where agents in a network
act in parallel as if the other nodes are parts of the
environment. Our model cannot learn an optimal pol-
icy: an agent in a network knows neither all the an-
cestors’ states10 nor neighbour’s policies11. However,
some RL models can be reconstructed using networked
RL with slight modifications. As examples, we recon-
struct three representative models of hierarchical RL,
modular RL, and POMDP3,7,9. Then, we solve the
same tasks used in the original papers.

In this paper, we use ‘reward’ and ‘payment’ for
incoming and outgoing reinforcement signals, respec-
tively. We also use ‘world’ and ‘environment’ for out-
side of the whole system and outside of an agent, re-
spectively.

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 469



2 Networked Reinforcement Learning

Networked RL consists of multiple agents, and their
dependencies are shown by directed arrows. Thus, the
whole system forms a network (Fig. 1a). When we
focus on a single agent in networked RL, its situation
is similar to that of standard RL. In standard RL,
problems are modelled as Markov decision processes
(MDPs, Fig. 1b). In MDPs, an agent receives a state
from the world and takes an action to the world in
each time step. Then it receives a real-valued reward
from the world.

Similarly, an agent in networked RL receives a state
from the world or its parent nodes, and it take an
action to the environment (Fig. 1c). It also receives
a reward from the environment. A crucial difference
from MDPs is that the environment of each agent does
not necessarily have the Markov property, even if the
world itself has. Another difference is that an agent
sends a reinforcement signal called payment to its child
nodes. Notice that when there is only one node, the
situation is equivalent to a MDP where a payment
does not make sense.

The payment function depends on state s, action
a, reward r, and next state s′. However, it is effi-
cient to exclude r from the function. For example, if
a child node knows only action a and payment p from
its parent, and if payment p depends on r (thus, p also
depends on s and s′), it is difficult for the child node
to maximise p without knowing s and s′.

For simplicity, we do not update the payment func-
tion by learning. Instead, we determine it in advance.
Let A and S denote sets of actions and states of an
agent, respectively. For each action a ∈ A, a set of
target states D(a) ⊂ S is defined in advance. If cur-
rent state s is not a member of the target states D(a),
a payment is sent only when a new state s′ 6= s is
observed. The payment is positive if s′ ∈ D(a) and
negative if s′ /∈ D(a). On the other hand, if current
state s is a member of the target states D(a), a posi-
tive payment is sent whenever s′ stays in the domain.
However, to avoid deadlocks among agents, a negative
payment is sent when a time-out occurs.

We use standard Q-learning and the Boltzmann se-
lection for each agent. A new action is selected only
after a different state is observed or a time-out occurs.
We also define two special actions called inhibit sig-
nals and null signals. If an agent gets more than one
inhibit signal from its parent nodes, it stops updat-
ing its policy and sends null signals to all child nodes.
These special signals are introduced for compatibility
with modular RL models.

World

Agent

Action
Payment

State
Reward

Child
nodes

Parent
nodes

Unknown
relation

a b

c

Agent

World

ActionState
Reward

Fig. 1: Schematic diagrams of (a) networked RL, (b)
Markov decision processes, and (c) interaction be-
tween an agent in a network and its environment. Pay-
ment means a rewarding signal sent to a child node.

3 Simulations

We reconstructed three representative RL models
using networked RL. Figure 2 shows the network struc-
tures of the three reconstructed models.

First, feudal Q-learning3 is a representative model
for hierarchical RL. It consists of multiple layers of RL
agents to deal with state representations of multiple
resolution. It can speed up learning because global
and local searches in the parameter space coexist. One
fault is that it converges to a sub-optimal policy.

In the original model, an agent is assigned to every
grid cell in each layer. However, this assumption is not
natural. Thus, we modified to use an agent per layer,
regarding a location of the grid world as a state.

Next, compositional Q-learning7 is a representative
model for modular RL. It aims for compositional tasks
which are composed of several elemental tasks. Mod-
ule agents learn elemental tasks, while the gating agent
selects a task among the elemental tasks according to
the ‘augmenting bits’ which deliver higher-order infor-
mation.

A different point is that in the reconstructed model
unselected agents do not learn at all, while in the orig-
inal model modules learn in proportion to the predic-
tion errors of the Q-values.

Finally, Cassandra et al.’s model9 is a representa-
tive model of POMDPs. This model has a recurrent
connection to deal with partial observability, because
the internal state reflects whole the history of state

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 470



observations.
In the original model, an agent called state estima-

tor represents the probability distribution of the true
state. And it has a connection to itself. In the recon-
structed model, each agent uses discrete states and
actions, and the first agent was decomposed into two.

Using the three reconstructed models, we solved the
same tasks used in the original papers (Fig. 3). In the
middle task, an agent has to visit at most three sub-
goals in the correct order. In the right task, an agent
can only observe whether or not the current state is
the goal.

The performance of the reconstructed models were
compared with standard RL with a single agent. Pa-
rameters for learning were set to the same between
standard RL and networked RL in each task except
for parameters for the payment functions.

Agent 1

Agent 2

Agent 3

World

Action

Gating
Agent

State
Reward

b
Agent 1

Agent 2

Agent 3

World

State Action

Sub goal

Sub goal

Reward

State
Reward Action

Agent 2

Agent 3

World

Agent 1

a

c

Fig. 2: Reconstructed network structures of (a) hier-
archical model, (b) modular model, and (c) POMDP
model.

1 2 3 4
A

BC

Fig. 3: Tasks used for (Left) hierarchical model, (Mid-
dle) modular model, and (Right) POMDP model, re-
spectively. Black circles denote the current position in
each grid world, and arrows show possible movements.
Positions marked by a star are goals, and A, B, or C
are sub-goals.

4 Results

Figure 4 shows the learning curves of the three sim-
ulations. All the models exhibited the same charac-
teristics as the original models: early convergence and
sub-optimality (top) and successful learning of optimal
policies (middle and bottom).

After learning, agents worked cooperatively. They
obeyed orders from the above (hierarchical model),
separated sub-tasks (modular model), and stored pre-
vious observations (POMDP model), respectively.

0 125 250 375 500 625 750 875 1000
Trials

0

20

40

60

80

100

A
ve

ra
ge

st
ep

s
to

go
al Networked RL

Standard RL

0 2000 4000 6000 8000 10000
Trials

0

20

40

60

80

100

A
ve

ra
ge

st
ep

s
to

go
al Networked RL

Standard RL

0 400 800 1200 1600 2000
Steps

0

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

re
w

ar
d

Networked RL
Standard RL

Fig. 4: Learning curves of simulations of (Top) hierar-
chical model, (Middle) modular model, and (Bottom)
POMDP model. Each point shows an average value
of 50, 50, and 100 trials, respectively.

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 471



5 Discussion

By relaxing restrictions, networked RL has both ad-
vantages and drawbacks compared with other hierar-
chical or modular RL models. In this paper, a few of
them were studied.

First advantage of networked RL is that it can
deal with cyclic dependencies among agents. This
property is efficient for POMDPs, as the result of
POMDP model showed. Furthermore, networked RL
with many nodes and recurrent connections would
have complex internal dynamics which is partially in-
dependent of the external world. Effects of internal
dynamics to the learning performance will be interest-
ing.

Next, networked RL is suitable for parallel compu-
tations, because each agent uses only local informa-
tion. However, we updated agents synchronously in
the test simulations.

Another property we did not study is flexibility such
as automatic task decomposition. Since network struc-
tures used in the test simulations were reconstructed
from already existing models, and since we set the pay-
ment functions manually, it is still an open question
whether or not networked RL can work as flexible as
our brains.

On the other hand, the main disadvantage of net-
worked RL is that there is no assurance to converge
to an optimal policy. However, all of the three re-
constructed models performed well and showed sim-
ilar characteristics to the original models. What we
have to do next is to apply our model to much more
complex tasks.

6 Summary

We have relaxed restrictions on hierarchical or mod-
ular reinforcement learning models to make them more
similar to our brains, and proposed the networked RL
where each agent in a network acts in parallel as if the
other agents are parts of the environment. Although
convergence to an optimal policy is no longer assured,
we have shown that our model performed well at least
in some simple situations by reconstructing three rep-
resentative RL models using networked RL.

Acknowledgements

This study is partially supported by Grant-in-Aid
No. 17022012 for Scientific Research on Priority Areas
System study on higher-order brain functions from the

Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

[1] Sutton RS, Barto AG (1998), Reinforcement
learning: An introduction, MIT Press

[2] Bakker B, Schmidhuber J (2004), Hierarchical re-
inforcement learning based on subgoal discovery
and subpolicy specialization, In Proceedings of the
8-th Conference on Intelligent Autonomous Sys-
tems, pp. 438–445

[3] Dayan P, Hinton GE (1993), Feudal reinforce-
ment learning, In Advances in Neural Information
Processing Systems, pp. 271–278

[4] Dietterich TG (2000), Hierarchical reinforcement
learning with the MAXQ value function decompo-
sition, Journal of Artificial Intelligence Research
13:227–303

[5] Doya K, Samejima K, Katagiri K, et al. (2002),
Multiple model-based reinforcement learning,
Neural Computation 14(6):1347–1369

[6] Parr R, Russell S (1998), Reinforcement learn-
ing with hierarchies of machines, In Advances in
Neural Information Processing Systems

[7] Singh SP (1992), Transfer of learning by compos-
ing solutions of elemental sequential tasks, Ma-
chine Learning 8(3–4):323–339

[8] Sutton RS, Precup D, Singh S (1999), Between
MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning, Artifi-
cial Intelligence 112(1–2):181–211

[9] Cassandra AR, Kaelbling LP, Littman ML
(1994), Acting optimally in partially observable
stochastic domains, In Proceedings of the Twelfth
National Conference on Artificial Intelligence

[10] Dolgov D, Durfee E (2004), Graphical models
in local, asymmetric multi-agent Markov decision
processes, In Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 956–963

[11] Nair R, Varakantham P, Tambe M, et al. (2005),
Networked distributed POMDPs: A synthe-
sis of distributed constraint optimization and
POMDPs, In Proceedings of the Twentieth Na-
tional Conference on Artificial Intelligence

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 472




